算子理论与算子代数及其应用报告会
报告题目:Pseudodifferential operators in the noncommutative setting
报告人:熊枭 教授 (哈尔滨工业大学)
报告时间:2022年09月16日(星期五)上午:10:00-11:00
报告地点:腾讯视频会议(线上)
会议ID:462-782-849 会议密码:220916
校内联系人:程国正 教授
报告摘要:The theory of pseudo-differential operators connects partial differential operators with harmonic analysis. It is an important tool in the study of PDE and differential geometry. It has recently been studied by McDonald, Sukochev and Zanin in a C*-algebraic way, which makes it possible to extend the theory to the noncommutative setting. In this talk, I will briefly discuss recent progress of this theory in some noncommutative spaces, mainly on symbol calculus and spectral asymptotic limit of some pseudo-differential operators. Finally I will give an application to Connes' quantum differential and integration in noncommutative geometry.
报告人简介:哈尔滨工业大学数学研究院常务副院长,教授,博士生导师。2015年在法国弗朗什-孔泰大学获得博士学位。2015年至2019年先后在韩国首尔国立大学、加拿大滑铁卢大学等高校从事博士后研究。主要从事非交换分析及其应用研究,包括算子值调和分析、非交换函数空间理论、非交换Fourier-Schur乘子理论,以及这里理论在非交换几何中的应用。迄今为止,在Memoirs Amer. Math. Soc.,Comm. Math. Phys., Adv. Math.及J. Funct. Anal.等数学权威期刊上发表论文数篇。