报告题目:学习显式样本权重映射的鲁棒深度学习
报告人: 孟德宇 教授(西安交通大学)
报告时间:2022年12月13日(星期二) 09:00-10:00
报告地点:腾讯会议611-370-958 密码:202212
校内联系人:杨洁 副教授 联系方式:84708351-8089
报告摘要: 现有深度学习方法的有效性依赖于对训练数据集的高质量要求,当训练集呈现蕴含复杂标记噪声、类别不均衡等数据偏差问题时,其有效性往往不能得以保证,这被称之为深度学习的鲁棒性学习问题。这一问题已经严重制约了深度学习在现实场景中的有效应用,是领域亟需面对的瓶颈问题。本报告将特别针对样本加权这一类典型的处理数据偏差的方法论展开讨论,介绍该方法论从针对少量数据偏差类型的传统手工赋权设定方法,如何演进到更为前沿的针对更多数据偏差类型的自动化赋权方法。特别地,将深入讨论在该方法论背后蕴含的元学习思想本质,挖掘其有效性理论内涵,从而揭示其可能对现实场景中复杂鲁棒深度学习问题的潜在泛化可用性。
报告人简介: 孟德宇,西安交通大学教授,博士生导师,任大数据算法与分析技术国家工程实验室统计与大数据中心副主任。发表论文百余篇,谷歌学术引用超过19000次。现任IEEE Trans. PAMI,Science China: Information Sciences等7个国内外期刊编委。目前主要研究聚焦于元学习、概率机器学习、可解释性神经网络等机器学习基础研究问题。