必赢3003am
通知与公告

【东北财经大学】Some progress on biharmonic conjectures

2023年07月12日 14:16  点击:[]

报告题目:Some progress on biharmonic conjectures

报 告 人:富宇 教授 东北财经大学

报告时间:2023714日(星期五) 15:00-16:00

报告地点:海山楼A1101

校内联系人:刘浏 教授  联系电话:84708351-8141


报告摘要:A longstanding conjecture on biharmonic submanifolds, proposed by Chen in 1991, is that any biharmonic submanifold in a Euclidean space is minimal. In the case of hypersurfaces, Chen's conjecture was settled the 2 dimensional case by Chen and Jiang around 1987 independently. Hasanis and Vlachos in 1995 settled Chen's conjecture for dimension 3. In collaboration with Hong and Zhan (Adv. Math. 2021), we settled Chen's conjecture for hypersurfaces for dimension 4. More recently, with Hong and Zhan (Trans. AMS 2023), we developed new techniques to settle Chen's conjecture and BMO conjecture on biharmonic hypersurfaces for dimension 5.


报告人简介:富宇,东北财经大学教授,博士生导师,数据科学与人工智能学院副院长。曾先后在澳大利亚昆士兰大学、意大利ICTP等交流和访问。研究方向为子流形几何、数理经济学等。近年来在国内外学术期刊Adv. Math.Trans Amer. Math. Soc.J. Geom. Anal.Tohoku Math. J.Pacific J. Math.Proc. Amer. Math. Soc.Contemp. Math.Math. Nachr.Intern. J. Math.J. Geom. Phys.Differ. Geom. Appl.以及《中国科学》等发表了论文40余篇,受邀撰写综述3篇。曾受邀在第七届中日几何会、奥地利微分几何会议、中日韩国际微分几何会议、第十届子流形的几何与拓扑学术会议作邀请报告。先后主持完成国家自然科学基金3项、博士后特别资助、博士后面上一等资助等省部级课题10余项。入选辽宁省百千万人才工程千层次,获东北财经大学杰出学者称号。



上一条:【大连海事大学】Inspiration of The Pascal Triangle 下一条:【河南师范大学】Convergence problem of Schrödinger equation in Fourier-Lebesgue spaces with rough data and random data

关闭