报告题目: The Isometric Immersion of Surfaces with Finite Total Curvature
报 告 人:黄飞敏 研究员 (中国科学院数学与系统科学研究院)
报告时间:2023年12月24日(星期日) 10:30-11:20
报告地点:海山楼(创新园大厦)B1410
校内联系人:王文栋 教授 联系电话:84708351-8139
报告摘要: In this paper, we study the smooth isometric immersion of a complete simply connected surface with a negative Gauss curvature in the three-dimensional Euclidean space. For a surface with a finite total Gauss curvature and appropriate oscillations of the Gauss curvature, we prove the global existence of a smooth solution to the Gauss-Codazzi system and thus establish a global smooth isometric immersion of the surface into the three-dimensional Euclidean space. Based on a crucial observation that some linear combinations of the Riemann invariants decay faster than others, we reformulate the Gauss-Codazzi system as a symmetric hyperbolic system with a partial damping.
Such a damping effect and an energy approach permit us to derive global decay estimates and meanwhile control the non-integrable coefficients of nonlinear terms. This is a joint work with Qing Han, Wentao Cao and Dehua Wang.
报告人简介:黄飞敏,现任中国科学院数学与系统科学研究院副院长,数学与系统科学研究院研究员、博士生导师。主要从事非线性偏微分方程的研究工作,在非线性双曲守恒律、可压缩Navier-Stokes方程、Boltzmann方程等重要领域取得一系列突出成果。迄今发表SCI学术论文百余篇,被包括Invent. Math.的SCI杂志引用两千多次,引用者包括菲尔茨奖获得者Figalli教授、美国科学院院士Dafermos、ICM一小时大会报告人Bressan教授等。曾获2013年国家自然科学奖二等奖(第一完成人),国家级青年基金,入选科技部中青年科技创新领军人才,两度在著名的国际双曲问题系列会议上做一小时大会报告,是《Communications in Mathematical Sciences》、《Kinetic and Related Models》、《Nonlinear Analysis: Real World Applications》等SCI杂志编委。