短课题目:An introduction to the theory of hyperbolic 3-manifolds. (3 lectures)
报 告 人:Andrei Vesnin 教授 (俄罗斯新西伯利亚索伯列夫数学研究所)
短课时间:2023年12月29日(星期五) 15:00-16:30
2024年1月8日(星期一) 15:00-16:30
2024年1月10日(星期三) 15:00-16:30
短课地点:海山楼(创新园大厦)A1101
校内联系人:雷逢春 教授 联系电话:84708360
报告摘要:We will discuss hyperbolic three-dimensional manifolds via their fundamental groups and fundamental polyhedra. This approach gives us a possibility to calculate volumes of hyperbolic manifolds. Due to the Rigidity theorem, volumes of hyperbolic manifolds are their topological invariants. In particular, the volumes are useful invariants of hyperbolic knots. In the first lecture we will discuss the Lobachevsky function introduced by J. Milnor. We will present the volume formulas for some classes on hyperbolic polyhedra. In the second lecture we will consider the structure of the set of volumes of hyperbolic 3-polyhedra described in the Thurston-Jorgensen theorem. In the third lecture we will discuss the open problems and some volumes conjectures about volumes of hyperbolic polyhedra, knots and 3-manifolds.
报告人简介:Andrei Vesnin教授,俄罗斯科学院通讯院士、托木斯克大学教授,新西伯利亚国立大学教授、俄罗斯科学院Sobolev 数学研究所应用分析实验室主任,主要从事双曲流形等方面的研究工作,是代数拓扑领域国际知名专家,多次承担国家研究基金项目,多次组织主办学术会议。